
 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

MULTI-SCALE ASSESSMENT OF THE POTENTIAL 

DISTRIBUTION OF TWO HERPETOFAUNAL SPECIES  

Jaime Ricardo García Márquez 
March, 2006 



   

 
 
 

Multi-Scale Assessment of the Potential Distribution  
of Two Herpetofaunal Species  

 
By 

 
 Jaime Ricardo García Márquez 

 
 
 
Thesis submitted to the International Institute for Geo-information Science and Earth Observation in 
partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science 
and Earth Observation, Specialisation: (fill in the name of the specialisation) 
 
 
 
 
Thesis Assessment Board 
 
Dr. Jan de Leeuw (Chairman), NRS Department, ITC  
Dr. Fred de Boer (External Examiner), Wageningen University, The Netherlands 
Dr. Ir. Kees de Bie (Internal Examiner), NRS Department, ITC 
Dr. A.G. Toxopeus (1st Supervisor), NRS Department, ITC 
Prof. Dr. Andrew K. Skidmore (2nd Supervisor), Chairman of the NRS Department, ITC 
 
 
 
 
 
 
 
 
 

 
 
 
 

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION  
ENSCHEDE, THE NETHERLANDS 



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Disclaimer 
 
This document describes work undertaken as part of a programme of study at the International 
Institute for Geo-information Science and Earth Observation. All views and opinions expressed 
therein remain the sole responsibility of the author, and do not necessarily represent those of 
the institute. 
 



MULTI-SCALE ASSESSMENT OF THE POTENTIAL DISTRIBUTION OF TWO HERPETOFAUNAL SPECIES  
 

 

 i 

Abstract 

 
The geographic distribution of reptiles and amphibians has been estimated over the years using 
several different modeling techniques which employ a set of environmental predictor variables and 
sets of occurrence records.  This study aims at estimating and comparing two herpetofaunal species 
potential distribution maps generated using: 1- different spatial scales, 2- different sets of 
environmental predictor variables at each scale and 3- three different modeling techniques 
(BIOCLIM, GARP, MAXENT). Receiver operating characteristic (ROC) curves and the Kappa 
statistic were utilized to measure the classification accuracy of the models.  The McNemar test was 
applied to evaluate if there were significant differences between the models. Finally, a Jackknife 
procedure implemented in MAXENT allowed for a qualitative analysis of variables importance 
regarding their influence in the description of the species distributions.   
 
Overall, the MAXENT technique achieved better predictions than the other modeling techniques, 
except at the local scale where GARP performed better.  Through the use of only climatic variables, 
all models predicted better than a prediction by chance (p < 0.0001) at the continental scale. For 
Bombina variegata at the regional scale, MAXENT was the only algorithm capable to integrate other 
type of data different from climate and predict correctly its distribution (p < 0.0001). All models 
predicted correctly the distribution of V. ursinii at the regional scale. At the regional scale not only 
climatic variables but soils and slope are important predictor defining the distribution of Bombina 
variegata while for Vipera ursinii climatic variables were still the most important ones. At the local 
scale both algorithms predicted correctly (P < 0.0001) except in the case of Bombina variegata where 
only GARP was able to predict correctly. Distance to streams appeared to have a significant influence 
on B. variegata and climatic plus land cover to V. ursinii. The use of different scales to model the 
spatial distribution of the target species gave a better understanding of their habitat relationships and 
their variation in space. 
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1. Introduction 

Habitat loss, land cover change, over exploitation, alien species, infectious diseases and even global 
change, are all recognized causes of herpetofaunal diversity decline (Alford et al., 2001; Collins and 
Storfer, 2003; Cushman, 2006; Goode et al., 2005; Goode et al., 2004). Even though these processes 
are continuously taking place all over the world, Hounahan et al. (2000) stated that amphibians 
decline stabilized after the 1960s in Western Europe. Thus, a key step in any conservation plan 
involving herpetofauna is to estimate its potential geographic distribution and the environmental 
factors that determine it. 
 
Different attempts have been made to describe herpetofaunal spatial distribution.  In some cases the 
authors have divided the group into amphibians and reptiles (Bock et al., 1981; Rodriguez et al., 2005; 
Segurado and Araujo, 2004), or into lizards, snakes and amphibians (Lee, 1980) or even into 
salamanders, frogs, toads, turtles, lizards, and snakes (Owen, 1989) all of them assuming that the 
chosen taxonomic treatment is considered to be evolutionarily and ecologically relevant.  General 
relationships between distributional patterns and environmental factors have been described and 
ecological hypotheses have been tested by means of these investigations.  Nevertheless, general 
patterns that apply for the herpetofauna as a group may not apply for some specific species. For 
example, the suggestion that reptiles benefit from forest cover in the landscape may not apply to 
particular reptile species that depend on nonforested habitats. There is very limited knowledge of 
specific amphibian and reptiles species-environment relationships and their distribution (Hazell, 
2003).  
 
Reliable understanding of species distribution and interactions with their environment requires careful 
attention to both characterization of the environment and scale (Cushman, 2006). The environmental 
characteristics that define the species distribution at one scale may not be the same that influence it 
and define it at different scales (Grand and Cushman, 2003; Levin, 1992). Consequently, it is a 
difficult task to estimate which is the right scale to study species-habitat relationships (distributional 
ranges). Investigations have been carried out concerning the multi-scale approach but most of them 
applied to birds (Fuhlendorf et al., 2002; Thompson and McGarigal, 2002). But when it comes to 
herpetofaunal spatial distribution studies, very few investigations considering the multi-scale 
approach can be found (Fischer et al., 2004).  
 
To address the issue of the multi-scale approach in species distribution studies, Geographical 
Information Systems (GIS) and remote sensing technology have played an important role (Guisan and 
Zimmermann, 2000).  The availability of different types of images (e.g. multispectral images, digital 
elevation models) on a broad range of spatial resolutions provides a mean to generate sets of 
environmental variables at different scales that can potentially influence the distribution of species in 
space. 
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There is also a great variety of statistical tools and techniques to model the species geographic 
distribution (Guisan and Zimmermann, 2000). These tools and techniques have diverse approaches to 
handle the species occurrence data that are being used as input to the models (Elith, 2002; Guisan and 
Zimmermann, 2000; Segurado and Araujo, 2004). After an extensive analysis of different modeling 
performances, Segurado & Araujo (2004) concluded that it is doubtful a unique and optimal 
distribution for accurately modeling will ever be identified and they recommend the modeller either 
(1) to use expert system models or models seen to be generally robust or; (2) choose a method that 
adjusts to the type of data and objectives pursued.   
 

1.1. Research Problem 

 
Guisan and Zimmermann (2000) pointed out that choosing a statistical technique to model the species 
distribution would be facilitated if comparatives studies are carried out. Since there are a great variety 
of models it is then a challenging task to choose the appropriate modeling technique and only multi-
model comparisons can deal with this issue.  This approach was employed here to evaluate the 
performance of three different modeling techniques. 
 
There are few investigations both, where the spatial distribution of single herpetofaunal species is 
being model at different scales (Real et al., 2005) and where the important predictor variables at 
varying spatial scales for the same species are studied (Fischer et al., 2004). It is the purpose of this 
research to gain insight as to which predictor variables define better single species distribution at 
different scales. 
 

1.2. Research Objectives 

 
This study aims at estimating and comparing the potential spatial distribution of two herpetofaunal 
species (Bombina variegata and Vipera ursinii) by using: 1- different spatial scales, 2- different sets 
of environmental predictor variables at each scale and 3- three different modeling techniques, 
BIOCLIM, GARP (Genetic Algorithm for Rule-set Production) and MAXENT (Maximum Entropy). 
To accomplish this, the following specific objectives are proposed: 
 

1. To generate different sets of predictor variables at each scale by means of spatially explicit 
data. 

 
2. To investigate the accuracy of the species potential spatial distribution maps. 

 
3. To determine if there is a significant difference between the accuracy of the different species 

potential spatial distribution maps. 
 

4. To evaluate, a posteriori, the predictor variables that are more significant at each scale to 
model the potential spatial distribution of the target species. 
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1.3. Research Question 

Following the sequence of the research objectives, the research questions that can be derived were 
formulated as follows: 
 

1. Based on the chosen set of predictor variables and the species occurrence observation points 
at each scale, how accurate are the species potential spatial distribution maps?  

 
2. Is there any significant difference between the accuracy of the maps generated from different 

modeling techniques?  Does any model perform significantly better than the others? 
 

3. Which predictor variables are more significant, at each scale, to model the potential spatial 
distribution of the target species? 

 

1.4. Research Hypothesis 

 
Given a set of predictor variables and a set of species occurrence observations at each scale, the three 
modeling techniques can generate accurate potential spatial distribution maps of the target 
herpetological species. 
 
Hypothesis 1: 

• Ho: Based on the chosen predictor variables, the estimated potential spatial distribution of the 
species does not predict better than a prediction by chance. 

• Ha: Based on the chosen predictor variables, the estimated potential spatial distribution of the 
species do predict better than a prediction by chance. 

 
Hypothesis 2: 

• Ho: There is no a significant difference between the accuracy of the maps generated using 
different modeling techniques. 

• Ha: There is a significant difference between the accuracy of the maps generated using 
different modeling techniques. 

 

1.5. Research Approach 

 
Three main stages can be identified in the research approach: (1) Data Management, (2) Modeling, 
and (3) Validation and Comparison (figure 1). A detail description of every stage and the activities 
carried out is shown in the methods section. 
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Figure 1.  Diagram showing the research approach and the different stages of the study 
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2. Methods 

2.1. Study Areas 

 
 

Figure 2. Figure showing the three study areas selected to map the species’ potential distribution: (1) 
Continental  area (20 x 20 Km), (2) Italy (1 x 1 Km), (3) Majella National Park (15 x 15 m). 

 
Three study areas with different extents and managed at different scales (pixel resolution) were 
considered in this study to examine the species’ potential distributions.  Continental scale (54.21°N – 
23.76°N, 18.14°W – 53.88°E). The area includes the Mediterranean Basin, north of Europe and part 
of west Asia. At this scale the data was handled at 20 km by 20 km pixel resolution.  
 
At the regional scale Italy was chosen. It covers 294,020 km² and consists of the boot-shaped Italian 
peninsula, the Po River valley, and two large islands in the Mediterranean Sea, Sicily and Sardinia. 
The Apennine Mountains form the backbone of this peninsula, leading north-west to where they join 
the Alps, the mountain range that then forms an arc enclosing Italy from the north. Here is also found 
a large alluvial plain, the Po-Venetian plain, drained by the Po River and its many tributaries flowing 
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down from the Alps (Wikipedia_Contributors, 2006). The information at this scale was treated at 1 
km by 1 km pixel resolution. 
 
The third study area is the Majella National Park, located in the Abruzzi region, Italy (figure 2); it 
covers a total area of 74095 hectares (Majella-National-Park-Authority, 2004). The Park is made up of 
four main elements: the Majella, a wide and compact calcareous massif, the Morrone, the Porrara 
and the Monti Pizzi, with the valleys and the karst planes interposing between them. Beech wood is 
predominant in the forests and alpine pines at high altitudes.  The spatial information at this particular 
scale had a pixel resolution of 15 meters by 15 meters. 
 

2.2. Herpetological Species 

2.2.1. Bombina variegata Linnaeus, 1758 

 
This species is distributed over much of central and southern Europe. It is generally present from 
central France through southern Germany and northern Switzerland, much of Italy, the Balkan region 
and the Carpathian Mountains. Isolated populations are present in western France, north-western Italy, 
Sicily (Italy) and Hungary. It is probably extinct in Belgium, and has been introduced to the UK 
(IUCN-Conservation-International-and-NatureServe, 2004). 
 
The isolated populations from the Apennine peninsula have an allopatric distribution and have been 
considered as a subspecies, B. v.  pachypus Bonaparte, 1938. The subspecies however was afforded 
the species status by Lanza and Vanni (1991) on the basis of electrophoretic results. Nevertheless the 
two species are treated in this study as only one (i.e. Bombina variegata). 
 

 
 

Figure 3. Bombina variegata: (a) dorsal view, (b) ventral view. The pictures were taken from club100 

(2006) 

 
The species can be found in coniferous, deciduous and mixed forests, bush lands and meadows, 
floodplains and grasslands. At low elevations this species lives in deciduous forests, at higher 
altitudes it is more often found in coniferous forests and highland glades. The species uses many types 
of wetland, including lakes, ponds, swamps, rivers, stream pools, springs (including mineral and 
thermal springs), puddles, reservoirs, gravel pits, ditches and even water filled wheel ruts. The 
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breeding habitats are typically unshaded temporary pools within or close to woodlands (IUCN-
Conservation-International-and-NatureServe, 2004).  
 
The species occurs mainly in hills and medium altitude mountains but does not go above tree line. The 
species has an altitudinal range of 100 to 2100 meters above sea level. Population decrease is due to 
climatic factor such as low precipitation or temperature. The disappearance of small water bodies is 
their main threat (Gasc et al., 1997). 
 

2.2.2. Vipera ursinii Bonaparte, 1833 

 
The ursinii taxon has most fragmented distribution due to its two extreme habitat priorities: lowland 
warm dry meadow-steppe habitats and alpine/subalpine dry meadow-steppe habitats. The lowland 
distribution has been reduced to about four remaining populations in Hungary. The situation is the 
same for the Moldavian, Ukrainian and Russian lowland populations which has been reduced to small 
pocket, often along the river valleys and in topographic landscapes difficult to bring under cultivation.  
The alpine/subalpine populations are distributed in a belt from France in the West to China in the 
East. In France the distribution is restricted to the southeast corner. In central Italy it is known from 
the three central Apennine massifs (Gasc et al., 1997).  
 

 
Figure 4. Vipera ursinii Bonaparte, 1933. Taken from Mazzei et al. (2006) 

 
In lowlands, the species is distributes from sea level to about 800 meters above sea level and in 
alpine/subalpine, between 1200 and 3000 meters above sea level (Gasc et al., 1997; Joger et al., 
2005). Lowland populations are in a critical situation; the habitats are destroyed by monocultural 
agriculture, draining, repeated fires, road constructions, and overgrazing by cattle, sheep and geese. 
Reconstruction of building of ski-runs, radar stations and roads are important reasons for the habitat 
destruction in the Alpine environment (Gasc et al., 1997).  
 
The taxon is composed of several subspecies and at least the populations located in Russia and 
Ukraine have been considered to be a separate species, V. u. renardi Christoph, 1861 (Nilson and 
Andrén, 2001). All the subspecies and V.  renardi were considered in this study as only and the same 
one species; Vipera ursinii. 
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2.3. Data Management 

The first task of the research was to search and to process both the information available concerning 
data-points representing species occurrence and the environmental predictor variables, which were 
derived from remote sensing images. The set of predictor variables used at each scale was chosen 
using a deductive approach; the selection relied on expert knowledge and on secondary information 
regarding the particular species.  
 

2.3.1. Species records extraction 

 
Continental Scale 
The species presence records were extracted from the Atlas of Amphibians and Reptiles in Europe 
(Gasc et al., 1997).  In this Atlas, the regular presence of the species is displayed according to the 
European network of meshes (50 km x 50 km) using the UTM system (ERTS89/UTM35N). However, 
in the final maps, only points (not the grid itself) are displayed. 
 
In order to extract the species presence points from the maps, the same 50 km x 50 km polygon vector 
grid was created according to the set of rules mentioned in the book as follows: when the base of the 
polygon was between 16 and 33 Km wide, two twin polygons were merged into one.  When the base 
was less than 16 Km wide the two twin polygons were added to the regular polygon immediately to 
the left from one of them or to the right from the other (Gasc et al., 1997). 
 
Finally, the polygon vector grid was reprojected to geographical coordinates (GCS_WGS84) and 
clipped to the continental area to avoid having areas over the ocean. Therefore, the final polygon 
vector grid consisted of polygons with different shapes and sizes. Given this, and because the 
predictor variables are 20 km by 20 km resolution, random points were generated for the polygons 
where the species were present. The number of random points selected was proportional to the size of 
the polygon.  The rest of the polygons were considered as absences. 
 
Regional Scale (Italy) 
The occurrence points for Italy were obtained from two sources. For each source a different method 
was applied.  The first source of information was an Excel database with a list of different 
herpetological species in the Lazio province in Italy.  From this database the information with 
reference to the specific location (latitude and longitude coordinates) of the species of interest was 
extracted. 
 
The second source of information (only for B. variegata) consisted of a set of jpg images of the 
distribution of the species in some of the provinces in Italy.  These images were georeferenced and 
projected to geographic coordinates (GCS_WGS84).  However, the distribution maps were originally 
generated using a grid size of 10 km x 10 km. Thus, an Italy polygon grid of 1 km x 1 km grid size 
was created. This Italy polygon grid was overlaid over the georeferenced maps and the occurrence 
points were extracted marking all the cells of the Italy polygon grid where the species were present. 
Finally 5 random single polygons of 1 km by 1 km were chosen from the Italy polygon grid within the 
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extent of each 10km by 10 km occurrence locations. The rest of the polygons were considered as 
absences. 
 
Local Scale (Majella National Park) 
The datasets containing the occurrence points for the species were obtained from previous fieldwork 
campaigns done by researchers at the University of Rome “La Sapienza”.  These datasets include the 
geographic coordinates where the species were collected.  The information was projected to UTM 
coordinates (WGS84/UTM33N). A polygon grid of 15 mt by 15 mt was created to the extent of the 
Park and the single polygons where the species were present were marked as presence and the rest as 
absence. 
 

2.3.2. Predictor variables compilation 

 
The species’ potential distributions were examined at three different extents and scales (e.g. pixel 
resolution). All variables at the continental scale were recorded at a pixel size of 0.166° by 0.166° 
(aprox. 20 Km2), at the regional scale (Italy) at a pixel size of 0.0083° by 0.00083° (aprox. 1 Km2), 
and at a local scale (Majella National Park) at a pixel size of 15m by 15 m (Table 1). 
 
The climatic data were extracted from the WORLDCLIM database.  These data are described in 
Hijmans et al. (2005). The data were generated through interpolation of average monthly climatic data 
from weather stations around the world.  The data were downloaded from the internet (Hijmans et al., 
2006) in ESRI grid format (20 by 20 Km and 1 by 1 Km pixel resolution) and processed in ArcGIS® 
9.0. To generate the climatic variables at 15 m by 15 m resolution, points were generated for each 
pixel of the 1 km by 1 km grids; then, based on this grid of points, interpolations were performed 
using the ordinary Kriging method. 
 
All topographical predictors used in this study were derived from digital elevation models (DEM) at a 
resolution of 1 km x 1 km for Italy and 15 m x 15 m for Majella National Park. The DEM used at the 
local scale was generated using Aster Stereo Image data. Slope angle and aspect were derived from 
elevation in ArcGIS® 9.0 (in-built functions). These variables were left as continuous. The potential 
direct solar radiation was calculated also from the digital elevation model (DEM) following the 
method developed by Kumar et al. (1997) which incorporates topographic shading effects.  The values 
were calculated every 30 minutes and summed up for a complete year. The soil layer used in the 
models at regional scale (Italy) was taken from the digital soil map of the world (FAO-UNESCO, 
1997). 
 
An ASTER image, dated June 9, 2001 was used to generate the land cover map of Majella National 
Park. A neural network backpropagation algorithm was implemented to classify the image (Skidmore 
et al., 1997) . A three layer network was employed. The algorithm assigns random weights to the input 
nodes hence every time the process is run different outputs are obtained.  The classification was 
performed 20 times (learning rate 0.2, momentum 0.3) and the critical system parameters (number of 
epochs, total system error,) were written to a file. These files were compared and the output with the 
highest percentage of test data correctly predicted was chosen. All the procedures were developed in 



MULTI-SCALE ASSESSMENT OF THE POTENTIAL DISTRIBUTION OF TWO HERPETOFAUNAL SPECIES  
 

 

 10 

ENVI 4.1. (RSI, 2004). The final land cover map consisted of six land cover classes: (1) pines; (2) 
forest; (3) natural grass; (4) bare soil; (5) cultivated grass; and (6) urban areas. 
 
During the modeling process not only the outputs must be validated by an accuracy assessment 
analysis but also the data used as input to the models have to be validated (Corsi, 2004). To validate 
the six classes land cover map through a valid error matrix, 706 samples should be taken according to 
the number of samples required based on a multinomial distribution (95% confidence interval, 5% 
precision) (Congalton and Green, 1999).  Due to time and accessibility limitations, a mix of cluster 
and random sampling techniques (Lo and Watson, 1998; Plourde and Congalton, 2003) was carried 
out. A 200 meters buffer to the roads was established and within that buffer random points were 
selected. Only accessible points were sampled. The accuracy of the land cover map was estimated 
using overall accuracy and the Khat statistic (Cohen, 1960; Congalton, 1991). The accuracy analysis 
was performed in the ArcView extension Cohen’s Kappa and Classification Table Metrics 2.0. 
(Jennes and Wynne, 2005). 
 

Table 1. List of the predictor variables used in the models. They represent aspects of topography, climate, 

habitat and human disturbance 
 

 Bombina variegata   Vipera ursinii 
        

Predictor Variables 
CONTINENTA

L ITALY MAJELLA   
CONTINENTA

L ITALY MAJELLA 

        
Annual Mean Temperature X X X     
Mean Temperature Driest Quarter     X X X 
Mean Temperature Warmest Quarter X X X  X X X 
Annual Precipitation X X X  X X X 
Precipitation of the Wettest Quarter X X X     
Precipitation of the Driest Quarter     X X X 
Precipitation of the Warmest Quarter     X X X 
Altitude  X X   X X 
Aspect  X X   X X 
Slope  X X   X X 
Radiation   X    X 
Land Cover  X X   X X 
Soil  X    X  
Distance to Roads   X    X 
Distance to Streams   X    X 
Distance to Towns     X       X 

 
The classified land cover map produced an overall accuracy of 82% and a Khat statistic of 0.72. It has 
been reported previously that the backpropagation neural network algorithm can perform well and 
better than other conventional classifiers when modeling general land cover classes as is the case here 
(Fitzgerald and Lees, 1992; Skidmore et al., 1997). 
 
The distance to streams variable was produced based on the streams derived from the DEM using the 
Hydrology geo-tool in ArcGIS® 9.0 (in-built functions).  The distance to roads variable was generated 
after digitalizing all the roads from the Majella National Park tourist map 
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(Parco_Nazionale_della_Majella, 2002).  The variable distance to towns was created extracting the 
towns land cover from the land cover map and estimating the distance. 
 
Although it is common use to apply some correlation analysis to evaluate which variables correlate to 
each other and extract the significant ones to use as inputs in the models (Barbosa et al., 2003), in this 
research it was decided on a more deductive approach, in which the set of predictor variables were 
chosen as they are believed to be causal, driving forces for the distribution of the target species at the 
different scales (Dettki et al., 2003; Guisan and Zimmermann, 2000). Thus, based on secondary 
information (e.g. literature) and personal conversation with experts, different sets of predictor 
variables were chosen for the target species. 
 

2.4. Modeling Techniques 

There is an extensive list of modeling techniques and algorithms available to investigate the relation 
between the predictor variables and species presence datasets in order to map their spatial distribution 
(Guisan and Thuiller, 2005; Guisan and Zimmermann, 2000). Three of these techniques were used 
here: BIOCLIM (Busby, 1991; Nix, 1986),  Genetic Algorithm for Rule-set Production (GARP) 
(Stockwell and Noble, 1992; Stockwell and Peters, 1999) and Maximum Entropy (MAXENT) 
(Phillips et al., in press; Phillips et al., 2004). 
 

2.4.1. BIOCLIM (Environmental Envelope) 

 
Skidmore (2002) explains briefly how BIOCLIM operates: “The BIOCLIM algorithm determines the 
distribution of plants and animals based on climatic surfaces. It models the species response to 
interpolated climatic variables by means of an environmental envelope. Firstly, the BIOCLIM process 
involves ordering each variable. Secondly, if the climate value for a grid cell falls within a user-
defined range (for example, the 5th and 95th percentile) for each of the climatic variables being 
considered, the cell is considered to have a suitable climate for the species. Using a similar argument, 
if the cell values for one (or more) climatic variables fall outside the 95th percentile range but within 
the (minimum) 0-5th percentile and (maximum) 95-100th percentile, the cell is considered marginal for 
a species. Cells with values falling outside the range of the sample data (for any of the climatic 
variables) are considered unsuitable for the species.” 
 
The BIOCLIM model was implemented in the software DIVA-GIS (DIVA-GIS, 2005). Duplicates and 
points falling within the same grid were removed from the analysis.  A percentile value of 0.01 was 
set to find out and exclude from the analysis the extreme observations in terms of climate. The outputs 
of the model are given in values between 0 and 500 representing the percentile values of areas suitable 
or not suitable for the target species.  Those values were divided by 500 to obtained new values 
between 0 and 1. 
 
The software DIVA_GIS brings in-built climatic layers, taken from the WORLDCLIM database. 
However, there are not available layers at the 15 meters by 15 meters pixel resolution, consequently, 
the BIOCLIM model was not used to estimate the potential spatial distribution of the species at the 
local scale. 
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2.4.2. GARP (Genetic Algorithm for Rule-set Production) 

 
The algorithm seeks a collection of rules that together produce binary prediction. A genetic algorithm 
is used to search heuristically for a good rule-set (Stockwell and Noble, 1992). Since there is a large 
random variability in GARP prediction, the best-subset selection procedure was implemented as 
follows: 50 binary models were generated with default values for its parameters (0.01 covergence 
limit, 1000 maximum iterations and allowing the use of only logit rules). Then a hard omission 
threshold of 10% was established and all models greater than this threshold were eliminated. Finally, 
only ten models under the threshold value were selected and combined to make a composite GARP 
prediction, in which the value of a pixel was equal to the number of best-subset models in which the 
pixel was predicted present (0-10). Similar procedures have been implemented by Anderson et al. 
(2003) and Raxworthy et al. (2004). The final values were divided by ten to get values between 0 and 
1.   
 

2.4.3. Maxent (Maximum Entropy) 

 
Maxent is a species distribution modeling technique that uses presence-only datasets. As Phillips, et 
al. (in press) mentioned: “The idea of MAXENT is to estimate a target probability distribution by 
finding the probability distribution of maximum entropy, subject to a set of constraints that represent 
our incomplete information about the target distribution.  The information available about the target 
distribution often presents itself as a set of real-valued variables, called “features”, and the constraints 
are that the expected value of each feature should match its empirical average (average value for a set 
of sample points taken from the target distribution”. 
 
The user-specified parameters were set as default (regularization multiplier = 1, maximum iterations = 
500, convergence threshold = 10-5, maximum number of background points = 10000, and use of 
linear, quadratic, product, threshold and hinge features). 
 
To analyze the variables importance used in the modeling process a Jackknife procedure was applied. 
This technique is an in-built functionality of MAXENT. Each variable is excluded and a model is 
created with the remaining ones. Then a model is created using each variable in isolation (Phillips, 
2006). The explanations of the results of this technique were made in a qualitative manner. 
 

2.5. Validation & Comparison 

 
In order to prevent low precision estimates or to overestimate the error rates of the accuracy resulting 
from sacrificing sample cases for validation purposes, an n-fold cross validation technique was 
adopted and carried out. Verbyla & Litvaitis (1989) made a description of this statistical technique in 
which the original dataset is randomly partitioned into n-nearly equal-sized subsamples.   Then one of 
the subsamples must be excluded (test sample) and the model must be developed with the remaining 
ones (training sample). The accuracy of the model is estimated with the subsample previously 
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excluded (test sample).  Then the excluded subsample must be returned, a second subsample must be 
excluded and the procedure should be repeated. The final estimate of model accuracy is the mean of 
the previous estimates (Verbyla and Litvaitis, 1989). 
 
The same training and test samples created at each different scale were used as the input occurrence 
points and testing sets respectively for all modeling techniques.  In this manner proper comparisons 
could take place between the final accuracy estimates of the different distribution maps. 
 
The five-fold cross validation was carried out for the continental occurrence datasets and also for B. 
variegata Italy dataset.  For V. ursinii Italy dataset a three-fold validation was implemented. In the 
case of Majella National Park datasets a different method was applied due to the small sample of 
occurrence records.  In this case the re-substitution method was performed (Verbyla and Litvaitis, 
1989) in which the model’s predictive ability was tested using the same samples used to train or to 
generate the model. 
 
As mentioned in section 2.4 the original output values of the models was transformed to values 
between 0 and 1. However a value of 0.5 in all models does not have the same significance. This is 
due to the fact that the algorithms differ in the way they produce the output.  Thus, an optimum 
threshold value (Pcrit) was calculated to determine the value above or below which one declares a 
species to be present or absent. The threshold value at which sensitivity (conditional probability that 
case x is correctly classified) and specificity (conditional probability that x is miss-classified) are the 
same was chosen (Bonn and Schröder, 2001b; Schröder and Richter, 1999/2000).  This threshold was 
used as the cut-off level to calculate the Kappa and the McNemar test. 
 

2.5.1. Absence Data 

 
One of the advantages of the models used in this research is that they do not need absence data like 
other models do (e.g. Generalized Linear Models).  Unfortunately, the accuracy measures techniques 
available to estimate the accuracy of the model’ outputs (i.e. Kappa, ROC curves), require absence 
records. Thus, random points to represent absence locations were taken from the polygon grids 
created previously to represent the presence locations of the species at the different scales.  The 
absence points were chosen only within the geographic extent of the presence locations. 
 

2.5.2. Kappa Statistic 

 
The accuracy of the output of the different modeling techniques was calculated using the Kappa 
statistic (Cohen, 1960; Congalton, 1991). The kappa statistic assesses the extend to which models 
predict occurrence at a rate higher than expected by chance (Monserud and Leemans, 1992). The 
results vary between 1.0 for perfect agreement down to 0.0 for agreement only due to chance. 
 
Because the prediction results from the models are given in continuous number ranging from 0 to 1 a 
cut-off point was established above or below which one declares a species to be present or absent (see 
section 2.5). Thus, the performance of the models were summarized in an error matrix that cross-
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tabulates the observed and predicted presence/absence pattern (Fielding and Bell, 1997) and based on 
the values of this matrix the Kappa was calculated (Figure 5). Since Kappa is asymptotically normally 
distributed, a basic z-score can be used for significance testing, based on the associated p value 
(Congalton and Green, 1999).  The calculations were made in the Cohen’s Kappa and Classification 
Table Metrics 2.0 extension of ArcView® (Jenness and Wynne, 2005). 
 

 
 

Figure 5. (a) confusion matrix  for presence/absence patterns and (b) formula to calculate the Kappa 

statistic based on confusion matrix. 

 

2.5.3. Receiver Operating Characteristic (ROC) curves 

 
The ROC is a threshold-independent technique. A ROC plot is obtained by plotting the fraction of 
correct classified cases on the y axis (sensitivity) against the fraction of wrong classified cases (1- 
specificity) for all possible thresholds on the x axis (Fielding and Bell, 1997). The area under the ROC 
function curve (AUC) is taken as a measure of overall accuracy that is not dependent upon a particular 
threshold (Deleo, 1993). It measures the probability, that in a pair randomly chosen out of the 
presence and absence data, the model will assign a higher probability of occurrence to the case with 
the observed presence (Bonn and Schröder, 2001a).  The values of the AUC vary from 0.5 (no 
apparent accuracy) to 1.0 (perfect accuracy). 
 
The ROC Plotting and AUC Calculation Transferability Test 1.3. software developed by Boris 
Schröder  for the Institute for Geoecology, Potsdam University (Schröder, 2004), was used to 
calculate the AUC.  ASCII tables were prepared having one column with the presence-absence values 
(e.g. 1 and 0) and a second column representing the prediction values generated by the modeling 
techniques.  The tables where imported into the software and the calculation were run. 
 
To estimate if the AUC values were significant different as compared to a prediction by chance (e.g. 
AUC = 0.5) a standard bootstrap method was implemented. This technique is a re-sampling method 
with replacement (Manly, 1997).  The execution of the bootstrap was made in The ROC Plotting and 
AUC Calculation Transferability Test 1.3. A 95% confidence interval was chosen and 2000 bootstrap 
samples were used. The standard error, the z statistic, the p probability and the significance difference 
from the critical AUC (i.e. 0.5) were estimated. 
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2.5.4. Testing Differences in Model Performances – McNemar Test 

 
As mentioned before the same training and test samples were used as the input and testing sets 
respectively for all modeling techniques.  In that sense, the data in the error matrices generated with 
each model correspond to dependent samples. The McNemar test can cope with dependent test 
samples and its use has been recommended when comparing the performance of alternative modeling 
techniques (de Leeuw et al., 2006). 
 
The McNemar test (McNemar, 1947) can be applied for dichotomous data represented in a 2 x 2 table 
(Table 2). The test calculates a measure, (b – c)2 / (b + c) that has an approximate X

2 value with 1 
degree of freedom if b + c is larger than 10; if not, a binomial test must be applied (Zar, 1999). 
 

Table 2. Cross tabulation of number of correct and wrongly classified pixels for two modeling 

techniques. Based on two separate error matrices for method 1 and 2 respectively. 

 
 Model 2 
Model 1 Correct Incorrect 
Correct a b 
Incorrect c d 
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3. Results 

3.1. Bombina variegata  

3.1.1. Potential distribution maps 

Visually, BIOCLIM and GARP algorithms produced broadly similar predictions for the potential 
spatial distribution of B. variegata at the continental scale. For this species only BIOCLIM and GARP 
algorithms indicated suitable conditions throughout Belarus, West Russia and West Ukraine.  GARP 
indicates also areas throughout Poland and East Germany while the MAXENT algorithm predicted 
absent for these areas (Figure 6).  
 

 
Figure 6. Predicted potential distribution of Bombina variegata at the continental scale using all 

occurrence records.  The location of the occurrence points are shown in (a). Results are given for 
BIOCLIM (b), GARP (c) and MAXENT (d).  For comparison purposes the optimum threshold value (Pcrit) 
was calculated: BIOCLIM = 0.07, GARP = 0.90, MAXENT = 0.19. 

 
From a visual interpretation of the prediction maps at the regional scale, it can be seen that the output 
prediction of BIOCLIM (which uses only climatic variables) is quiet different from the predictions 
obtained with GARP and MAXENT at the regional scale (Figure 7). First of all, the BIOCLIM 
prediction map shows a more homogeneous pattern while GARP and MAXENT showed a more 
patchy pattern. Secondly, BIOCLIM predicted a more extensive distribution for the species; it 
indicated suitable conditions for the species in the Po-Venetian plain at low altitudes whereas GARP 
and MAXENT did not (Figure 7). 
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Figure 7. Predicted potential distribution of Bombina variegata at the regional scale (Italy) using all 

occurrence points.  The location of the occurrence points are shown in (a). Results are given for 
BIOCLIM (b), GARP (c) and MAXENT (d).   For comparison purposes the optimum threshold value (Pcrit) 
was calculated: BIOCLIM = 0.16, GARP = 0.30, MAXENT = 0.26. 

 
Considering the threshold values identified for both models, the two algorithms predicted quite 
different the location where the species could potentially be present (Figures 8).  GARP indicated a 
more restricted distribution of the species (Figure 8c) while MAXENT predicted a more extensive 
distribution, especially along the streams (Figure 8d). 

 

 
Figure 8. Predicted potential distribution of Bombina variegata at the local scale (Majella).  The black dots 
represent the occurrence points. Results are given for GARP (a) and MAXENT (b).    For comparison 
purposes the optimum threshold value (Pcrit) was calculated and displayed here as: GARP = 0.95(c), 
MAXENT = 0.43(d). 
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3.1.2. Accuracy Assessment and Model Comparison test 

 
For all training samples of the occurrence data, the AUC and Kappa values were highly statistically 
significant for all algorithms (p < 0.0001) indicating better than random predictions (Table 3). Figure 
9a shows the ROC curves for the three algorithms at the continental scale using the third partition of 
the training samples. The performance of MAXENT was better across the entire spectrum: for any 
given proportion of test localities predicted correctly, MAXENT achieved that proportion with a 
lower false positive rate. The MAXENT prediction was significantly higher than that of GARP and 
BIOCLIM (p < 0.001; McNemar test). Furthermore, no significant difference was found between 
GARP and DIVA (p > 0.05; McNemar test). Results for other training samples were similar. 
 

Table 3. Results of receiver operating characteristic (ROC) and Kappa statistic analyses for Bombina 

variegata at the continental scale produced with the three modeling techniques. For each training sample, 
the area under the curve (AUC) and the Kappa statistic is given for BIOCLIM, GARP and MAXENT. 

 

 
 
At the regional scale (Italy) BIOCLIM was not able to predict better than chance (p > 0.05) 
considering the AUC values (Table 4).  Regarding the Kappa values, they show a poor agreement but 
still better than a random prediction (p < 0.01) (Table 4). Addition of potential variables different 
from climate should increase the AUC and Kappa, since there is more information available to the 
classifiers.  However, GARP was not able to predict better than a prediction by chance considering 
the AUC (p > 0.05); also moderate kappa values were estimated from GARP results although better 
than a prediction by chance (p < 0.01) . At this scale only the MAXENT algorithm was able to predict 
correctly indicating a better than random prediction for both AUC and Kappa (p < 0.0001) (Table 4).  
 
The ROC curves for the three algorithms at the regional scale showed the superiority of MAXENT 
over GARP and DIVA (Figure 9b). However, at low sensitivity and false positive rates the three 
algorithms performed similar. For all partitions of the training sample MAXENT was significantly 
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better than that of GARP (p < 0.05; McNemar test) and highly significantly better than that of 
BIOCLIM (p < 0.001; McNemar test). No significant difference was found between GARP and DIVA 
(p > 0.05; McNemar test). 
 

Table 4. Results of receiver operating characteristic (ROC) and Kappa statistic analyses for Bombina 

variegata at the regional scale produced with the three modeling techniques. For each training sample, the 
area under the curve (AUC) and the Kappa statistic is given for BIOCLIM, GARP and MAXENT. 

 

 
 

 
Figure 9. Receiver operating characteristic (ROC) curves for the three algorithms on the third training 
sample of occurrence records.  The results are given for Bombina variegata at the continental scale (a), at 
the regional scale (b) and at the local scale (c). Sensitivity equals the proportion of test localities correctly 
predicted present. The quantity (1 – specificity) equals the proportion of all map pixels predicted to have 
suitable condition for the species. 

 
At the local scale the AUC values and Kappa statistic for the GARP algorithm were highly significant 
(p < 0.0001) indicating better-than-random prediction. For the MAXENT algorithm the AUC was not 
significant (p > 0.05) but it was significant better than a prediction by random regarding the Kappa 
which showed a moderate agreement (Table 5). The ROC curves show how GARP performed better 
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and always higher than MAXENT (Figure 9c). GARP performed significantly greater than MAXENT 
(p < 0.05; McNemar test).  
 

Table 5. Results of receiver operating characteristic (ROC) and Kappa statistic analyses for Bombina 

variegata at the local scale produced with two modeling techniques. For each training sample, the area 
under the curve (AUC) and the Kappa statistic is given for GARP and MAXENT. 

 

 
 

3.1.3. Predictor Variables Importance 

 
From an evaluation of the jackknife procedure at the continental scale it is concluded that 
precipitation related variables have the highest gains when used in isolation compared with 
temperature related ones (Figure 10). The same pattern was found for all partitions of the occurrence 
data (Appendix A). However, excluding the precipitation of the wettest quarter from the analysis did 
not decrease the total gain as the annual precipitation did, being the latest the most important variable 
at this scale. Table 6 shows the range of values for the two more important variables at which the 
species response is higher. The response curves for all predictor variables can be seen in appendix B. 

 
 

 
Figure 10. Jackknife of training gain for B. variegata at continental scale on the second random partition of 
occurrence records (train 2). The climatic variable with highest gain when used in isolation is annual 
precipitation, which therefore appears to have the most useful information by itself. The climatic variable 
that decreases the gain the most when it is omitted is again annual precipitation, which therefore appears to 
have the most information that isn't present in the other variables. 

 
At the regional scale (Italy) soils appeared having the strongest influence in predicting the spatial 
distribution of B. variegata on all random partitions of the occurrence records (Figure 11, Appendix 
C). In addition, climatic related variables (mean annual temperature, mean temperature of warmest 
quarter and annual precipitation) have also a substantial influence on the distribution of the species, as 
well as the altitude and slope. Table 6 shows the range of values for these variables. Appendix D 
shows the response curves of these variables. 
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Table 6. Suitable range of values of the predictor variables that contribute the most to the general MAXENT 
distribution gain.  Values are for the species Bombina variegata at the different scales. 

 

 
 
 

 
Figure 11. Jackknife of training gain for B. variegata at regional scale (Italy) on the second random 
partition of occurrence records (train 2). The environmental variable with highest gain when used in 
isolation is soil which therefore appears to have the most useful information by itself. The environmental 
variable that decreases the gain the most when it is omitted is again soil which therefore appears to have the 
most information that isn't present in the other variables. 

 
From the Jackknife analysis at the local scale it can be seen that human induced variables (distance to 
streams, distance to roads and distance to towns) gain more importance in predicting the spatial 
distribution of B. variegata, together with the altitude (figure 12). Regarding the climatic variables at 
this particular scale, only the mean temperature of the warmest quarter appeared to have important 
information to predict the species potential distribution. Table 6 shows the range of values for these 
variables at which the species response is higher. The response curves of the predictor variables can 
be observed in appendix E.   
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Figure 12. Jackknife of training gain for B. variegata at local scale (Majella). The environmental variable 
with highest gain when used in isolation is distance to streams which therefore appears to have the most 
useful information by itself. The environmental variable that decreases the gain the most when it is omitted is 
again distance to streams, which therefore appears to have the most information that isn't present in the 
other variables. 

 

3.2. Vipera ursinii  

3.2.1. Potential distribution maps 

 
When using all occurrence locations for the species the three algorithms produced quiet different 
predictions for Vipera ursinii potential distribution at the continental scale (figure 13). BIOCLIM and 
GARP indicated suitable conditions throughout Russia, Belarus, Poland, and Hungary.  In addition, 
BIOCLIM also indicated suitable areas in Germany, The Netherlands, North and Middle France and 
North of Spain. MAXENT on the contrary predicted more correctly within the species’ known range. 
 
The three algorithms indicated similar suitable areas for V. ursinii at the regional scale in Middle 
Italy, in the Abruzzo region (figure 14). However, the GARP algorithm indicated also suitable areas in 
the North of Italy, over the Alps (figure 14c). 
 
At the local scale (Majella National Park), the two algorithms (GARP and MAXENT) produced 
similar predictions for the potential distribution of V. ursinii considering the thresholds established for 
each algorithm (figure 15c and 15d).   
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Figure 13. Predicted potential distribution of Vipera ursinii at the continental scale () using all occurrence 
records.  The location of the occurrence points are shown in (a). Results are given for BIOCLIM (b), GARP 
(c) and MAXENT (d).   For comparison purposes the optimum threshold value (Pcrit) was calculated: 
BIOCLIM = 0.09, GARP = 0.65, MAXENT = 0.21. 

 

       
Figure 14. Predicted potential distribution of Vipera ursinii at the regional scale (Italy).  The location 

of the occurrence points are shown in (a). Results are given for BIOCLIM (b), GARP (c) and MAXENT 
(d).  For comparison purposes the optimum threshold value (Pcrit) was calculated: BIOCLIM = 0.03, 
GARP = 0.91, MAXENT = 0.18. 
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Figure 15. Predicted potential distribution of Vipera ursinii at the local scale (Majella).  The black dots 
represent the occurrence points. Results are given for GARP (a) and MAXENT (b).  For comparison 
purposes the optimum threshold value (Pcrit) was calculated: GARP = 0.95(c), MAXENT = 0.42(d). 

 

3.2.2. Accuracy analysis and Comparison test 

 
For all training sets of the occurrence data at the continental scale, the AUC and Kappa values were 
highly statistically significant for all algorithms (p < 0.0001), indicating better than chance predictions 
(Table 7). The AUC values indicated strong predictions (AUC > 0.88) while the Kappa values 
indicated moderate to strong agreement between the prediction and the test samples (Kappa > 0.5) 
(Table 7). The ROC curve showed that the performance of MAXENT was better than BIOCLIM and 
GARP across the entire spectrum (Figure 16a). The MAXENT prediction was significantly greater 
than that of GARP and BIOCLIM (p < 0.01; McNemar test). A non-significant difference was found 
between BIOCLIM and GARP predicitons (p > 0.05; McNemar test). Results for other training 
samples were similar. 
 

Table 7. Results of receiver operating characteristic (ROC) and Kappa statistic analyses for Vipera 

ursinii at the continental scale produced with the three modeling techniques. For each training sample, 
the area under the curve (AUC) and the Kappa statistic is given for BIOCLIM, GARP and MAXENT. 
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For all training samples of the occurrence data at the regional scale, the AUC values were highly 
statistically significant for all algorithms (p < 0.0001) indicating better than random predictions 
except for the first training sample of the BIOCLIM algorithm (Table 8). The Kappa values also 
indicated a statistically significant difference than a prediction by chance (p < 0.0001) with moderate 
Kappa values. Note how for the first training sample in BIOCLIM has the lowest AUC value but the 
highest Kappa value. There were no significant differences between the performances of the three 
algorithms (p > 0.05; McNemar Test) (figure 16b). 
 

Table 8. Results of receiver operating characteristic (ROC) and Kappa statistic analyses for Vipera 

ursinii at the regional scale produced with the three modeling techniques. For each training sample, the 
area under the curve (AUC) and the Kappa statistic is given for BIOCLIM, GARP and MAXENT. 

 

 
 

 
Figure 16. Receiver operating characteristic (ROC) curves on the third partition of the training samples for 
the three algorithms for Vipera ursinii at each different scale: Continental (a), Italy (b) and Majella (c). 
Sensitivity equals the proportion of test localities correctly predicted present. The quantity (1 – specificity) 
equals the proportion of all map pixels predicted to have suitable condition for the species. 

 
The AUC and Kappa values calculated for the two algorithms at the local scale were highly 
statistically significant (p < 0.0001) indicating a better than random predictions (Table 9). There was 
not a significant difference between the prediction performance of the two models (p > 0.05; 
McNemar test) (figure 14C). 
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Table 9. Results of receiver operating characteristic (ROC) and Kappa statistic analyses for Vipera 

ursinii at the local scale produced with two modeling techniques. For each training sample, the area 
under the curve (AUC) and the Kappa statistic is given for GARP and MAXENT. 

 

 
 

3.2.3. Predictor Variables Importance 

 

Figure 17 shows that precipitation and mean temperature of the warmest quarter are the most 
important variables in predicting the potential distribution of Vipera ursinii at the continental scale. 
The Jackknife analysis resulted in the same variables behaviour for all partitions of the occurrence 
records for the species. Table 10 shows the range of values for this variable at which the species 
response is higher. Appendix F shows the response curves for these variables. 
 

 
Figure 17. Jackknife of training gain for V. ursinii at continental scale on the second random partition of 
occurrence records. The climatic variable with highest gain when used in isolation is precipitation of the 
warmest quarter, which therefore appears to have the most useful information by itself. The mean 
temperature of the warmest quarter is the variable that decreases the gain the most when it is omitted, which 
therefore appears to have the most information that isn't present in the other variables. 

 
The Jackknife analysis for all partitions of the occurrence data showed the same variables response, 
being temperature related variables together with the altitude the most important in predicting the 
potential distribution of V. ursinii at the regional scale (Figure 18). However, the precipitation of the 
warmest quarter appeared to have a strong influence since removing it from the analysis decreases 
considerably the total gain (Figure 18). Table 10 shows the range of values for this variable at which 
the species response is higher. Appendix G shows the response curves for these variables. 
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Figure 18. Jackknife of training gain for V. ursinii at regional scale on the second random partition of 
occurrence records. The environmental variable with highest gain when used in isolation is the temperature 
of the driest quarter, which therefore appears to have the most useful information by itself. The 
environmental variable that decreases the gain the most when it is omitted is the precipitation of the warmest 
quarters, which therefore appears to have the most information that isn't present in the other variables. 

 
Table 10. Suitable range of values of the predictor variables that contribute the most to the general 

MAXENT distribution gain.  Values are for the species Vipera ursinii at the different scales.  

 
 
At the local scale, the variables that contribute the most to the total gain are the mean temperature of 
the driest quarter, elevation, and land cover (figure 19). Appendix H shows the response curves for 
these variables. 

 
Figure 19. Jackknife of training gain for V. ursinii at local scale. The environmental variable with highest 
gain when used in isolation is the mean temperature of the driest quarter, which therefore appears to have 
the most useful information by itself. The environmental variable that decreases the gain the most when it is 
omitted is the Land Cover, which therefore appears to have the most information that isn't present in the 
other variables. 
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4. Discussion 

4.1. What is really being modeled? 

 
The spatial distribution of a species is determined by different factors operating at different scales and 
with different intensities (Pearson and Dawson, 2003). Soberon and Peterson (2005) describe four 
classes of factors that determine the areas in which a species is found: (1) abiotic conditions (e.g. 
climate, physical environment) that impose physiological limits on species’ ability to persist, (2) 
biotic factors (e.g. interactions with other species), (3) regions that are accessible to dispersal by the 
species from some original area, and (4) the evolutionary capacity of populations of the species to 
adapt to new conditions. 
 
When using factors 1 to estimate the spatial distribution of species, the fundamental niche (FN) is 
being estimated (Hutchinson, 1957), which includes the total range of environmental conditions that 
are suitable for the existence of the species without the influence of inter-specific competition or 
predation from other species.  The realized niche (RN) describes that part of the fundamental niche 
actually occupied by the species and is represented through the integration of factors 1 and 2 
(Hutchinson, 1957). Finally, Soberon and Peterson (2005) stated that stable populations of a species 
will be found only in regions where factors 1, 2 and 3 intersect. 
 
Given these conditions, the question is how the results of the modeling process in this research can be 
interpreted?  Basically, the layers provided as input to the models were abiotic (Table 1).  No biotic 
information was included in the analysis. The occurrence records databases created for the species, 
excluded all observations where the species was known to be introduced, therefore, areas accessible to 
dispersal by the species were excluded from the analysis.  In that sense, the three modeling techniques 
used here were presented with abiotic information (factor 1) and with occurrence points coming from 
source populations and the output maps must be interpreted as the fundamental niches of the species. 
 
As an example, the distribution maps of B. variegata at the continental scale can be used (Figure 6). 
The three algorithms are predicting suitable conditions in the north of Spain. Note that factors such as 
biotic or geographic barriers that can prevent the species to disperse are not taking into account (i.e. 
not used as predictor variables). However, looking at the map showing the occurrence observation 
records, no observations have been made for this species in Spain. It is then concluded that the 
potential distribution has been mapped but not the actual distribution of the species. 
 
Contrary to this view, Guisan and Thuiller (2005) stated that the observed distributions (i.e. 
occurrence records) are already constrained by biotic interactions and limiting resources and in that 
sense, species distribution models are quantifying Hutchinson’s realized niche of species.  The 
discussion is still open. 
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4.2. Model Performance  

 
At the continental scale, threshold-independent ROC analysis and Kappa index showed that the three 
algorithms performed significantly better than random. The MAXENT algorithm however, performed 
significantly better than the other algorithms on all data partitions for both species. It is also 
MAXENT the one generating a better prediction within the species’ known range for both species at 
this particular scale, while extensive areas of potential distribution indicated by GARP and BIOCLIM 
appeared to overestimate the extent of suitable environmental conditions for the species. Phillips et al. 
(in press) found the same models behaviour when comparing prediction maps generated by MAXENT 
and GARP. 
 
Another issue concerning the ability of species distribution models to predict the organisms’ spatial 
distribution, is the type of predictor variables that can be included in the analysis and how models can 
handle such variables.  Specifically, this refers to continuous vs. categorical data. When statistically 
comparing the performance of the models at the regional scale (Italy) for B. variegata, only 
MAXENT was able to predict significantly better than a prediction by chance regarding the AUC 
values and with moderate agreement considering the kappa value; soil (i.e. categorical variable) was 
the most relevant predictor variable (Figure 11).  Knowing that, it was expected to obtain significantly 
better results from GARP algorithm, since categorical data can be included into the model.  However, 
it appeared that GARP algorithm is not able to integrate properly this type of data. These findings 
support the results of Phillips et al. (in press) who concluded that through the inclusion of the 
potential vegetation, GARP did not improve the prediction accuracy of a model treated at first with 
only climatic and elevation variables (i.e. continuous variables).  
 
The AUC and Kappa values for MAXENT and GARP algorithms for both species at the local scale 
(i.e. Majella) were relatively high (AUC > 0.8 and Kappa > 0.49 respectively). However, the AUC 
value of MAXENT for B. variegata (AUC = 0.82) was not significantly different than a prediction by 
chance (p > 0.05) considering the confidence intervals which support the AUC value stability (Table 
5).  This high values in general could be explained based on the method applied at this scale to test the 
performance of the models. Verbyla and Litvaitis (1989) describe the re-substitution method as testing 
the model’s predictive ability by using sample cases that were used to develop the model. This method 
produces an optimistically biased estimate of the model’s true classification accuracy, especially if 
many predictor variables are used in relation to sample cases (Verbyla, 1986) which is the case in this 
study when examining the distribution of the species at the local scale. 
 
There are, however, some factors that can be considered as having an effect on overall model 
performance. It could be that some of the variables used to model the spatial distribution of the 
species were not the appropriate ones at the specific scale.  Data quality can also have a strong 
influence in model performance (Segurado and Araujo, 2004): imprecise location of species 
occurrences for example.  This can apply for B. variegata at the regional scale (i.e. Italy 1 km x 1 km), 
given that most of the occurrence points were generated randomly from the occurrence record grids 
available in atlases with resolution of 10 km by 10 km.  
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The AUC comparison is somewhat biased in MAXENT’s favor, as a continuous prediction will 
typically have a higher AUC than a discrete prediction as is the case here when compared to GARP 
(Phillips et al., 2004). However, the Kappa values throughout the sets of analysis showed the same 
pattern, being always higher in favor of MAXENT, except at the local scale cases. 
 
One of the main advantages of the algorithms used in this study is that they do not require absence 
data localities like the generalized linear models (GLM) (McCullagh and Nelder, 1989) or the 
generalized additive models (GAM) (Hastie and Tibshirani, 1990) do. However, the problem arises 
when the accuracy of the models wants to be measure; in order to use the ROC curves and the Kappa 
statistic as an estimate of the models’ performance, negative examples must be interpreted from all 
grid cells with no occurrence localities, even if they support good environmental conditions for the 
species (Phillips et al., 2004). In this research, random points, representing species absences, were 
selected from the polygon grids representing the extent of the known distribution of the species and 
where the species has not been reported (see section 2.5.1).  This is a common approach to generate 
populations of points representing “pseudoabsences” (Stockwell and Peterson, 2002). 
 
Soberón and Peterson (2005) mentioned that pseudoabsences should be delineated carefully based on 
a priori hypotheses about the region and species to be modeled.  For example Graf et al. (2005) 
assumed habitat suitability based on the habitat range of the species to be the factor used to select 
areas of species absence.  Based on those hypotheses,  Soberón and Peterson (2005) explain an 
argument of why the different distribution modeling techniques are mapping the fundamental niche 
(FN) of the species rather than the realized niche (RN). 
 

4.3. Habitat-Species Relationships 

 
The species Bombina variegata had a broad distribution pattern.  At the different scales the species 
was associated with precipitation (annual precipitation) and temperature related variables. The 
optimal range found for these variables (Table 2) are consistent with published information (Bernini 
et al., 2006; Gasc et al., 1997; IUCN-Conservation-International-and-NatureServe, 2004).  Owen 
(1989) found that the mean annual precipitation was the most important predictor for frogs at large 
scale (50 by 50 Km grid resolution) in a landscape in Texas. The findings of an association of 
moderate slopes and Vertisol soils with the presence of the species at regional scale may be related to 
water bodies’ formation.  Gasc et al. (1997) noted that the species uses many types of wetlands. 
Vertisol soils are characterized by a horizon with 30% or more of clay which makes it susceptible to 
water bodies’ formation, like small ponds and reservoirs, places that B. variegata will use as breeding 
habitats. This is also the reason why the species is more likely to be found near streams which is 
supported by the findings at local scale (Table 6). The apparent preferences of B. variegata at the 
local scale for areas nearby roads and towns (Table 6) could be a biased estimated towards sampling 
schemes carried out in accessible areas. Reddy and Dávalos (2003) found also a high correlation 
between occurrence localities and nearby presence of roads. On the other hand, other works have 
shown a negative relationship between frogs and urban developments (Delis et al., 1996) and roads 
(Fahrig et al., 1995). 
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The habitat relations found for Vipera ursinii are consistent with the known habitat requirements 
described in different field guides (Gasc et al., 1997; Gruber, 1989; Joger et al., 2005). The findings at 
the continental scale match with the requirements of the species distributed in lowland warm dry 
meadow-steppe habitats where the climatic conditions are characterized by low precipitation values 
and high temperature values (Table 10).  On the other hand, the values found for Italy and Majella are 
in conformity with the species distributed in alpine/subalpine dry meadow-steppe habitats. Here, the 
species is located at higher altitudes, with low precipitation and temperature values (Table 10).  At the 
local scale the species is associated also with pine and grassland covers. The species has been 
observed in pine forest gaps (grassland cover) in the Majella National Park (Bologna, M. pers. 
commun.). The park has been subject to abandonment processes since its establishment and natural 
regeneration processes have been taking place.  The gaps within the Pine stands are reducing in size, 
factor that could have a negative influence on the habitats of the snake and conservation efforts must 
take this into account. 
 

4.4. Effects of Scale (grain size) and Extent 

 
The scale in this study was expressed as the grain size (pixel size) and the extent expressed by the 
study areas. One common problem in modeling species distribution is the mismatch between the 
resolutions at which species occurrences are presented (e.g. grid size in atlas surveys) and the one at 
which environmental predictor are available (Guisan and Thuiller, 2005). A common approach to deal 
with this issue is to aggregate the predictor variables to a coarser resolution to match the resolution of 
the occurrence records resolution (e.g. Owen, 1989; Thuiller et al., 2004). The opposite approach was 
taken in this research.  From the occurrence record grids (e.g. 50 km by 50 km at continental scale) 
random points were generated within each grid to properly represent the variability of the 
environmental predictor represented at lower resolutions (e.g. 20 km by 20 km at continental scale) 
(see section 2.3.1).   
 
However, some of these points could have fallen over areas with extreme values outside the known 
range of the species ecological requirements. In BIOCLIM it is possible to exclude the extreme values 
from the analysis by identifying the outliers. The outliers were recognized by defining a range of 
optimum values for each of the climatic variables considered (see section 2.4.1). However the other 
algorithms do not have this capability and all the occurrence observation points were included in the 
analysis.  As a result, different predictions were estimated from every algorithm. For example, 
BIOCLIM is predicting the species B. variegata absent at higher altitudes in the Alps (> 1.600 
m.a.s.l.) while MAXENT and GARP predicted positively the species in these areas (Figure 6). 
 
Comparing these results with the actual altitude known range of the species, being this range from a 
few metres at sea level to about 1800 m a.s.l. (Bernini et al., 2006), it can be concluded that BIOCLIM 
is giving a better estimate than GARP and MAXENT of the actual known distributional range of 
Bombina variegata at the continental scale. 
 
The importance of the extent on the interpretation of the processes driving the observed distribution 
patterns of the species could be recognized from the findings for Vipera ursinii. Patterns observed at 
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one extent were not apparent on another extent.  The optimal ecological requirements were quite 
different for the species when analyzed at different extents (e.g.  continental vs. regional) (Tables 6 
and 10). If the spatial distribution of V. ursinii is to be model only at the regional scale (e.g. in this 
research using a political boundary: Italy), then the resulting response would be expressing a biased 
estimate of the real response of the species to climatic variables.  Van Horn (2002) demonstrated how 
an incorrect interpretation could be made when only part of an important gradient is sampled when 
using political instead of natural boundaries and Patthey (2003) reveal how some environmental 
variables best characterize the overall species range when analyzed on a large scale, whereas other 
features best characterize  the habitat of the same species at the population or home range level. 
 

4.5. Predictor Variables and Scale 

 
Usually, researchers calculate correlation coefficients (e.g. Pearson coefficient or PCA) to avoid using 
correlated variables and to reduce the effects of multi-colinearity (e.g. Mas et al., 2004). However, 
from this type of analysis ecologically relevant variables could be excluded. Bumhan and Anderson 
(1998) have made clear that applying correlation analysis in order to find the significant set of 
variables will most probably expose false correlations.  In this study no correlation analysis was 
carried out. 
 
Different classification schemes exist to categorize the environmental predictors employ to predict 
species distribution. Austin (2002) for example divide these predictor into three categories: (1) 
indirect predictors, having no physiological effect on species (e.g. altitude), (2) direct predictors, 
having a direct physiological influence on species (e.g. temperature) and (3) resource predictors, those 
variables that are consumed by the organism (e.g. water).   
 
With the modeling approach presented here, different combination sets of direct and indirect predictor 
variables were chosen and were believed to have a potential influence on the species distributions. 
Those variables, however, should affect the species’ distribution at the relevant scale, determined by 
the geographic extent and scale (grain) of the modeling task (Pearson et al., 2004).  In words of 
Mackey and Lindenmayer (2001), climatic variables such as temperature and precipitation are 
appropriate at global and meso-scales; topographic variables (e.g. aspect, slope) likely affect species 
distribution at meso- and topo-scales; and land cover variables influence species distributions at the 
micro-scale.  Other authors have mentioned that topography no longer has any predictive power at 
coarse resolution (e.g. Neilson, 1995).  In the present study some variables actually had a strong 
influence in determining the species distribution at larger scales, while others were stronger at small 
scales (Tables 6 and 10). In a study where a multi-scale approach was undertaken (Fischer et al., 
2004) similar scale dependencies were found. 
 
Following these ideas, different sets of predictor variables were chosen to model the species’ 
distributions at different scales and extents (Table 1).  At the continental level, only climatic related 
variables (direct predictors) were used and statistically speaking, all models for both species predicted 
better than a prediction by chance (AUC > 0.90).  In a different research (Thuiller et al., 2004), the 
authors included land cover to a bioclimatic model to estimate the spatial distribution of species in 
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Europe (50 km by 50 km grid resolution); the findings demonstrated that the addition of land cover 
does not improve the model’s predictive accuracy. In addition, Guisan and Hofer (2003) concluded 
that climatic predictors more closely match the actual reptile distributions when compared with 
distributions based on topography at meso-scale.  
 
In the case of B. variegata at the regional scale, soils together with climatic variables were the most 
important predictor variables defining the species distribution (Figure 11).  That could explain why at 
the regional scale BIOCLIM (which uses only climatic variables) was not able to predict correctly the 
spatial distribution of this species (Table 4). In contrast, for V. ursinii climatic variables were more 
important at the regional and local scales (Figures 18 and 19) and in this case all algorithms were able 
to predict correctly. This demonstrates that the integration of direct and indirect predictors at regional 
scales generates better prediction than using only direct predictors (climate) when the species is in 
fact influenced strongly by indirect predictors as well (e.g. soils for B. variegata). But if the species is 
influenced strongly by climatic variables, the inclusion of other type of predictors does not have a 
strong influence in the spatial prediction. 
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5. Conclusions 

 
Species occurrences records and sets of environmental variables at three different scales and extent as 
well as three different modeling techniques were utilised to estimate the potential spatial distribution 
of two herpetological species, Bombina variegata and Vipera ursinii.   
 
A proper interpretation of the distribution maps obtained by way of the modeling techniques relies on 
the concept of the species ecological niche. Thus, given the set of abiotic predictor variables and the 
set of occurrence records, the fundamental niche of the species were mapped in this study.   
 
The MAXENT technique achieved better predictions than the other modeling techniques, except at 
the local scale where GARP performed better.  When MAXENT proved to be better, it did it both 
with higher AUC and Kappa values, and generating a better prediction within the species’ known 
range.  MAXENT is a robust algorithm than can deal with different types of data (categorical and 
continuous) at different resolutions.  
 
The main assumption of the BIOCLIM technique is that the distribution of the species is influenced 
primarily by climate.  In fact, when the distribution of any species is driven by climatic variables at 
different scales, as was the case here for Vipera ursinii, BIOCLIM performed better than a prediction 
by chance. On the contrary, Bombina variegata showed a strong dependency for variables different 
from climate at the regional scale and in this case BIOCLIM was not able to predict correctly the 
distribution of the species. Thus a thoroughly study of the ecology of the species and models 
capabilities and assumption is required when modeling the species’ geographic distribution. 
 
At the continental scale, only climatic variables were chosen to model the potential spatial distribution 
of the species, and all models predicted correctly (p < 0.0001) (prediction better than a prediction by 
chance) taking into account the area under the curve (AUC) and Kappa as measures of their accuracy. 
Although no other types of predictor variables were used at this scale for comparison purposes, the 
results support the idea that climatic variables alone are adequate to model species’ distributions at 
larger scales. 
 
The multi-scale approach developed in the present study provided significant insights in the habitat-
relationships of the target species. The use of different scales to model the spatial distribution of the 
species gives a better understanding of the diverse responses of the species to different environmental 
variables at different geographic extents. 
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6. Recommendations 

 
A recommended approach that might improve the actual geographic distribution of the species is to 
use a deductive approach in which the a priori known ecological requirement of the species is used to 
extrapolate suitable areas from the environmental layers available (Corsi, 2004). One of these 
environmental layers could be the output map showing the fundamental niche generated by means of 
the models that use an inductive approach like the ones used in this study. 
 
The general performance of the models could be influenced by errors in the environmental variables 
used as input. Although an accuracy assessment was carried out to the land cover map at the local 
scale, a step forward should include the validation of all layers used as input to the models and an 
evaluation of error propagation during the generation of the models’ predictions (Corsi et al., 2000). 
 
The analysis performed in this study regarding the predictor variables importance was made in a 
qualitative way.  Recent advances in the software package that carries out the MAXENT algorithm 
allows for a proper quantitative analysis of this aspect.  
 
Although the models used in this research have the advantage of working with only presence data, the 
validation techniques available to estimate the accuracy of the output predictions still have the 
limitation of working with absence data.  New validation statistical procedures must be created to deal 
with this issue. 
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7. Appendices 

7.1. Appendix A. Jackknife of training gain for B. variegata at continental scale on all random 
partitions of occurrence records. The environmental variable with highest gain when used in 
isolation is Annual Precipitation, which therefore appears to have the most useful 
information by itself. It is also the Annual Precipitation that decreases the gain the most 
when it is omitted; therefore it appears to have the most information that isn't present in the 
other variables.  
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7.2. Appendix B. Response curves of the environmental variables predicting the potential 
distribution of Bombina variegata at the continental scale on the second random partition of 
the occurrence records. The MAXENT model has the form exp(…)/constant, and the curves 
show how the exponent changes as each environmental variable is varied, keeping all others 
at their average sample value. 
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7.3. Appendix C. Jackknife of training gain for B. variegata at regional scale on all random 
partitions of occurrence records. The environmental variable with highest gain when used in 
isolation is the is soil, which therefore appears to have the most useful information by itself. 
It is also the soil variable that decreases the gain the most when it is omitted; therefore it 
appears to have the most information that isn't present in the other variables.  
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7.4. Appendix D. Response curves of the environmental variables predicting the potential 
distribution of Bombina variegata at the regional scale (Italy) on the second random partition 
of the occurrence records. The MAXENT model has the form exp(…)/constant, and the 
curves show how the exponent changes as each environmental variable is varied, keeping all 
others at their average sample value. 
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7.5. Appendix E. Response curves of the environmental variables predicting the potential 
distribution of Bombina variegata at the local scale (Majella) The MAXENT model has the 
form exp(…)/constant, and the curves show how the exponent changes as each 
environmental variable is varied, keeping all others at their average sample value. 
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7.6. Appendix F. Response curves of the environmental variables predicting the potential 
distribution of Vipera ursinii at the continental scale. The MAXENT model has the form 
exp(…)/constant, and the curves show how the exponent changes as each environmental 
variable is varied, keeping all others at their average sample value. 
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7.7. Appendix G. Response curves of the environmental variables predicting the potential 
distribution of Vipera ursinii at the regional scale (Italy) The MAXENT model has the form 
exp(…)/constant, and the curves show how the exponent changes as each environmental 
variable is varied, keeping all others at their average sample value. 
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7.8. Appendix H. Response curves of the environmental variables predicting the potential 
distribution of Vipera ursinii at the local scale (Majella) The MAXENT model has the form 
exp(…)/constant, and the curves show how the exponent changes as each environmental 
variable is varied, keeping all others at their average sample value. 
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